EXERCISE 5.1 [PAGE 67]

Exercise 5.1 | Q 1 | Page 67

If A(1, 3) and B(2, 1) are points, find the equation of the locus of point P such that PA = PB.

SOLUTION

Let P(x, y) be any point on the required locus. Given, A(1, 3) and B(2, 1). PA = PB \therefore PA² = PB² \therefore (x - 1)² + (y - 3)² = (x - 2)² + (y - 1)² \therefore x² - 2x + 1 + y² - 6y + 9 = x² - 4x + 4 + y² - 2y + 1 \therefore -2x - 6y + 10 = -4x - 2y + 5 \therefore 2x - 4y + 5 = 0 \therefore The required equation of locus is 2x - 4y + 5 = 0.

Exercise 5.1 | Q 2 | Page 67

A(-5, 2) and B(4, 1). Find the equation of the locus of point P, which is equidistant from A and B.

SOLUTION

Let P(x, y) be any point on the required locus. P is equidistant from A(- 5, 2) and B(4, 1). \therefore PA = PB \therefore PA² = PB² \therefore (x + 5)² + (y - 2)² = (x - 4)² + (y - 1)² \therefore x² + 10x + 25 + y² - 4y + 4 = x² - 8x + 16 + y² - 2y + 1 \therefore 10x - 4y + 29 = -8x - 2y + 17 \therefore 18x - 2y + 12 = 0 \therefore 9x - y + 6 = 0 \therefore The required equation of locus is 9x - y + 6 = 0.

Exercise 5.1 | Q 3 | Page 67

If A(2, 0) and B(0, 3) are two points, find the equation of the locus of point P such that AP = 2BP.

SOLUTION

Let P(x, y) be any point on the required locus. Given, A(2, 0), B(0, 3) and AP = 2BP \therefore AP² = 4BP² \therefore (x - 2)² + (y - 0)² = 4[(x - 0)² + (y - 3)²] \therefore x² - 4x + 4 + y² = 4(x² + y² - 6y + 9) \therefore x² - 4x + 4 + y² = 4x² + 4y² - 24y + 36 \therefore 3x² + 3y² + 4x - 24y + 32 = 0 \therefore The required equation of locus is 3x² + 3y² + 4x - 24y + 32 = 0

Exercise 5.1 | Q 4 | Page 67

If A(4, 1) and B(5, 4), find the equation of the locus of point P if $PA^2 = 3PB^2$.

SOLUTION

Let P(x, y) be any point on the required locus. Given, A(4, 1), B(5, 4) and PA² = 3PB² $\therefore (x - 4)^2 + (y - 1)^2 = 3[(x - 5)^2 + (y - 4)^2]$ $\therefore x^2 - 8x + 16 + y^2 - 2y + 1 = 3(x^2 - 10x + 25 + y^2 - 8y + 16)$ $\therefore x^2 - 8x + y^2 - 2y + 17 = 3x^2 - 30x + 75 + 3y^2 - 24y + 48$ $\therefore 2x^2 + 2y^2 - 22x - 22y + 106 = 0$ $\therefore x^2 + y^2 - 11x - 11y + 53 = 0$ \therefore The required equation of locus is $x^2 + y^2 - 11x - 11y + 53 = 0$.

Exercise 5.1 | Q 5 | Page 67

A(2, 4) and B(5, 8), find the equation of the locus of point P such that $PA^2 - PB^2 = 13$.

CLICK HERE

🕀 www.studentbro.in

SOLUTION

Let P(x, y) be any point on the required locus. Given, A(2, 4), B(5, 8) and $PA^2 - PB^2 = 13$ $\therefore [(x - 2)^2 + (y - 4)^2] - [(x - 5)^2 + (y - 8)^2] = 13$ $\therefore (x^2 - 4x + 4 + y^2 - 8y + 16) - (x^2 - 10x + 25 + y^2 - 16y + 64) = 13$ $\therefore 6x + 8y - 69 = 13$ $\therefore 6x + 8y - 82 = 0$ $\therefore 3x + 4y - 41 = 0$ \therefore The required equation of locus is 3x + 4y - 41 = 0.

Exercise 5.1 | Q 6 | Page 67

A(1, 6) and B(3, 5), find the equation of the locus of point P such that segment AB subtends right angle at P. ($\angle APB = 90^\circ$)

SOLUTION

Let P(x, y) be any point on the required locus. Given, A(1, 6) and B(3, 5), $(\angle APB = 90^{\circ})$ $\therefore \Delta APB = 90^{\circ}$ $\therefore \Delta APB$ is a right angled triangle. By Pythagoras theorem, $AP^2 + PB^2 = AB^2$

 $\begin{array}{l} \therefore \ [(x-1)^2 + (y-6)^2] + [(x-3)^2 + (y-5)^2] = (1-3)^2 + (6-5)^2 \\ \therefore \ x^2 - 2x + 1 + y^2 - 12y + 36 + x^2 - 6x + 9 \ x \ y^2 - 10y + 25 = 4 + 1 \\ \therefore \ 2x^3 + 2y^2 - 8x - 22y + 66 = 0 \\ \therefore \ x^2 + y^2 - 4x - 11y + 33 = 0 \\ \therefore \ The required equation of locus is \\ x^2 + y^2 - 4x - 11y + 33 = 0. \end{array}$

Exercise 5.1 | Q 7.1 | Page 67

If the origin is shifted to the point O'(2, 3), the axes remaining parallel to the original axes, find the new co-ordinates of the points A(1, 3)

SOLUTION

Origin is shifted to (2, 3) = (h, k)Let the new co-ordinates be (X, Y). $\therefore x = X + h \text{ and } y = Y + k$ $\therefore x = X + 2 \text{ and } y = Y + 3 \dots(i)$ Given, A(x, y) = A(1, 3) $x = X + 2 \text{ and } y = Y + 3 \dots[From (i)]$ $\therefore 1 = X + 2 \text{ and } 3 = Y + 3$

 \therefore X = -1 and Y = 0

 \therefore the new co-ordinates of point A are (- 1, 0)

Exercise 5.1 | Q 7.2 | Page 67

If the origin is shifted to the point O'(2, 3), the axes remaining parallel to the original axes, find the new co-ordinates of the points B(2, 5)

SOLUTION

Origin is shifted to (2, 3) = (h, k)Let the new co-ordinates be (X, Y). $\therefore x = X + h \text{ and } y = Y + k$ $\therefore x = X + 2 \text{ and } y = Y + 3 \dots(i)$ Given, B(x, y) = B(2, 5) $x = X + 2 \text{ and } y = Y + 3 \dots[From (i)]$ $\therefore 2 = X + 2 \text{ and } 5 = Y + 3$ $\therefore X = 0 \text{ and } Y = 2$ \therefore the new co-ordinates of point B are (0, 2).

Exercise 5.1 | Q 8.1 | Page 67

If the origin is shifted to the point O'(1, 3), the axes remaining parallel to the original axes, find the old co-ordinates of the points C(5, 4)

SOLUTION

Origin is shifted to (1, 3) = (h, k)Let the new co-ordinates be (X, Y). x = X + h and y = Y + k $\therefore x = X + 1$ and y = Y + 3 ...(i) Given, C(X, Y) = C(5, 4)x = X + 1 and y = Y + 3 ...[From (i)] $\therefore x = 5 + 1 = 6$ and y = 4 + 3 = 7 \therefore the old co-ordinates of point C are (6, 7).

Exercise 5.1 | Q 8.2 | Page 67

If the origin is shifted to the point O'(1, 3), the axes remaining parallel to the original axes, find the old co-ordinates of the points D(3, 3)

SOLUTION

Origin is shifted to (1, 3) = (h, k)Let the new co-ordinates be (X, Y). x = X + h and y = Y + k $\therefore x = X + 1$ and y = Y + 3 ...(i) Given, D(X, Y) = D(3, 3) x = X + 1 and y = Y + 3 ...[From (i)]

 $\therefore x = 3 + 1 = 4$ and y = 3 + 3 = 6

 \therefore the old co-ordinates of point D are (4, 6).

Exercise 5.1 | Q 9 | Page 67

If the co-ordinates (5, 14) change to (8, 3) by shift of origin, find the co-ordinates of the point, where the origin is shifted.

SOLUTION

Let the origin be shifted to (h, k). Given, (x, y) = (5, 14), (X, Y) = (8, 3)Since, x = X + h and y = Y + k $\therefore 5 = 8 + h$ and 14 = 3 + k $\therefore h = -3$ and k = 11 \therefore the co-ordinates of the point, where the origin is shifted are (-3, 11).

Exercise 5.1 | Q 10.1 | Page 67

Obtain the new equations of the following loci if the origin is shifted to the point O'(2, 2), the direction of axes remaining the same: 3x - y + 2 = 0

SOLUTION

Given, (h, k) = (2, 2) Let (X, Y) be the new co-ordinates of the point (x, y). $\therefore x = X + h \text{ and } y = Y + k$ $\therefore x = X + 2 \text{ and } y = Y + 2$ Substituting the values of x and y in the equation 3x - y + 2 = 0, we get 3(X + 2) - (Y + 2) + 2 = 0 $\therefore 3X + 6 - Y - 2 + 2 = 0$ $\therefore 3X - Y + 6 = 0$, which is the new equation of locus.

Exercise 5.1 | Q 10.2 | Page 67

Obtain the new equations of the following loci if the origin is shifted to the point O'(2, 2), the direction of axes remaining the same: $x^2 + y^2 - 3x = 7$

SOLUTION

Given, (h, k) = (2, 2) Let (X, Y) be the new co-ordinates of the point (x, y). $\therefore x = X + h \text{ and } y = Y + k$ $\therefore x = X + 2 \text{ and } y = Y + 2$ Substituting the values of x and y in the equation $x^2 + y^2 - 3x = 7$, we get $(X + 2)^2 + (Y + 2)^2 - 3(X + 2) = 7$ $\therefore X^2 + 4X + 4 + Y^2 + 4Y + 4 - 3X - 6 = 7$ $\therefore X^2 + Y^2 + X + 4Y - 5 = 0$, which is the new equation of locus.

Exercise 5.1 | Q 10.3 | Page 67

Obtain the new equations of the following loci if the origin is shifted to the point O'(2, 2), the direction of axes remaining the same: xy - 2x - 2y + 4 = 0

SOLUTION

Given, (h, k) = (2, 2) Let (X, Y) be the new co-ordinates of the point (x, y). $\therefore x = X + h \text{ and } y = Y + k$ $\therefore x = X + 2 \text{ and } y = Y + 2$ Substituting the values of x and y in the equation xy - 2x - 2y + 4 = 0, we get (X + 2) (Y + 2) - 2(X + 2) - 2(Y + 2) + 4 = 0 $\therefore XY + 2X + 2Y + 4 - 2X - 4 - 2Y - 4 + 4 = 0$ $\therefore XY = 0$, which is the new equation of locus.

EXERCISE 5.2 [PAGES 69 - 70]

Exercise 5.2 | Q 1.1 | Page 69

Find the slope of the following lines which pass through the point: (2, -1), (4, 3)

SOLUTION

Let A =
$$(x_1, y_1) = (2, -1)$$
 and B = $(x_2, y_2) = (4, 3)$.

Slope of line AB =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{3 - (-1)}{4 - 2}$
= $\frac{4}{2}$
= 2.

Exercise 5.2 | Q 1.2 | Page 69 Find the slope of the following lines which pass through the point: (-2, 3), (5, 7)

SOLUTION

Let $C = (x_1, y_1) = (-2, 3)$ and $D = (x_2, y_2) = (5, 7)$.

Slope of line CD =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{7 - 3}{5 - (-2)}$
= $\frac{4}{7}$.

Exercise 5.2 | Q 1.3 | Page 69

Find the slope of the following lines which pass through the point: (2, 3), (2, -1)

SOLUTION

Let $E = (2, 3) = (x_1, y_1)$ and $F = (2, -1) = (x_2, y_2)$ Since $x_1 = x_2 = 2$ \therefore The slope of EF is not defined. ...[EF || y-axis]

Exercise 5.2 | Q 1.4 | Page 69

Find the slope of the following lines which pass through the point: (7, 1), (-3, 1)

SOLUTION

Let, G = (7, 1) = (x₁, y₁) and H = (-3, 1) = (x₂, y₂) say. Since $y_1 = y_2$

Exercise 5.2 | Q 2 | Page 69

If the X and Y-intercepts of line L are 2 and 3 respectively, then find the slope of line L.

CLICK HERE

🕀 www.studentbro.in

SOLUTION

Given, x-intercept of line L is 2 and y-intercept of line L is 3 \therefore the line L intersects X-axis at (2, 0) and Y-axis at (0, 3). i.e. the line L passes through (2, 0) = (x1, y1) and (0, 3) = (x2, y2) say.

Slope of line L =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{3 - 0}{0 - 2}$
= $\frac{-3}{2}$.

Exercise 5.2 | Q 3 | Page 69

Find the slope of the line whose inclination is 30°.

SOLUTION

Given, inclination (θ) = 30°

Slope of the line = tan
$$\theta$$
 = tan 30° = $\frac{1}{\sqrt{3}}$.

Exercise 5.2 | Q 4 | Page 69

Find the slope of the line whose inclination is 45°.

SOLUTION

Given, inclination (θ) = 45° Slope of the line = tan θ = tan 45° = 1.

Exercise 5.2 | Q 5 | Page 69

A line makes intercepts 3 and 3 on the co-ordinate axes. Find the slope of the line.

SOLUTION

Given, x-intercept of line is 3 and y-intercept of line is 3 ∴ The line intersects X-axis at (3, 0) and Y-axis at (0, 3). i.e. the line passes through (3, 0) = (x1, y1) and (0, 3) = (x2, y2) say.

Given, inclination (θ) = 30°

Slope of the line = tan
$$\theta$$
 = tan 30° = $\frac{1}{\sqrt{3}}$.

Exercise 5.2 | Q 6 | Page 69

Without using Pythagoras theorem, show that points A (4, 4), B (3, 5) and C (-1, -1) are the vertices of a right-angled triangle.

SOLUTION

Given, A(4, 4) = (x1, y1), B(3, 5) = (x2, y2), C (-1, -1) = (x3, y3)
Slope of AB =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 4}{3 - 4} = -1$$

Slope of BC = $\frac{y_3 - y_2}{x_3 - x_2} = \frac{-1 - 5}{-1 - 3} = \frac{-6}{-4} = \frac{3}{2}$
Slope of AC = $\frac{y_3 - y_1}{x_3 - x_1} = \frac{-1 - 4}{-1 - 4} = \frac{-5}{-5} = 1$

Slope of AB x slope of AC = $-1 \times 1 = -1$

 \therefore side AB \perp side AC

- .: ΔABC is a right angled triangle, right angled at A.
- ... The given points are the vertices of a right angled triangle.

Exercise 5.2 | Q 7 | Page 69

Find the slope of the line which makes angle of 45° with the positive direction of the Y-axis measured clockwise.

Since, the line makes an angle of 45° with positive direction of Y-axis in anticlockwise direction.

- \therefore Inclination of the line (θ) = (90° + 45°)
- \therefore Slope of the line = tan(90° + 45°)
- $= -\cot 45^{\circ}$...[tan (90 + θ°) = $-\cot \theta$] = -1.

Exercise 5.2 | Q 8 | Page 70

Find the value of k for which the points P(k, -1), Q(2, 1) and R(4, 5) are collinear.

SOLUTION

Given, points P(k, -1), Q(2, 1) and R(4, 5) are collinear. \therefore Slope of PQ = Slope of QR

$$\therefore \frac{1 - (-1)}{2 - k} = \frac{5 - 1}{4 - 2}$$
$$\therefore \frac{2}{2 - k} = \frac{4}{2}$$
$$\therefore 1 = 2 - k$$
$$\therefore k = 2 - 1 = 1.$$

EXERCISE 5.3 [PAGE 73]

Exercise 5.3 | Q 1.1 | Page 73

Write the equation of the line: parallel to the X-axis and at a distance of 5 units from it and above it.

SOLUTION

Equation of a line parallel to X-axis is y = k. Since, the line is at a distance of 5 units above X-axis. $\therefore k = 5$ \therefore the equation of the required line is y = 5.

Exercise 5.3 | Q 1.2 | Page 73

Write the equation of the line: parallel to the Y-axis and at a distance of 5 units from it and to the left of it.

SOLUTION

Equation of a line parallel to Y-axis is x = h. Since, the line is at a distance of 5 units to the left of Y-axis. $\therefore h = -5$ \therefore the equation of the required line is x = -5.

Exercise 5.3 | Q 1.3 | Page 73

Write the equation of the line: parallel to the X-axis and at a distance of 4 units from the point (-2, 3).

SOLUTION

Equation of a line parallel to the X-axis is of the form y = k (k > 0 or k < 0). Since, the line is at a distance of 4 units from the point (-2, 3). $\therefore k = 3 + 4 = 7 \text{ or } k = 3 - 4 = -1$

 \therefore the equation of the required line is y = 7 or y = -1.

Exercise 5.3 | Q 2.1 | Page 73

Obtain the equation of the line: parallel to the X-axis and making an intercept of 3 units on the Y-axis.

SOLUTION

Equation of a line parallel to X-axis with y-intercept 'k' is y = k. Here, y-intercept = 3 \therefore the equation of the required line is y = 3.

Exercise 5.3 | Q 2.2 | Page 73

Obtain the equation of the line: parallel to the Y-axis and making an intercept of 4 units on the X-axis.

SOLUTION

Equation of a line parallel to Y-axis with x-intercept 'h' is x = h. Here, x-intercept = 4 \therefore the equation of the required line is x = 4.

Exercise 5.3 | Q 3.1 | Page 73 Obtain the equation of the line containing the point: A(2, – 3) and parallel to the Y-axis.

SOLUTION

Equation of a line parallel to Y-axis is of the form x = h. Since, the line passes through A(2, -3). \therefore h = 2

 \therefore the equation of the required line is x = 2.

Exercise 5.3 | Q 3.2 | Page 73

Obtain the equation of the line containing the point: B(4, -3) and parallel to the X-axis.

SOLUTION

Equation of a line parallel to X-axis is of the form y = k. Since, the line passes through B(4, -3)

 $\therefore k = -3$

: the equation of the required line is y = -3.

Exercise 5.3 | Q 4 | Page 73

Find the equation of the line passing through the points A(2, 0) and B(3, 4).

SOLUTION

The required line passes through the points $A(2, 0) = (x_1, y_1)$ and $B(3, 4) = (x_2, y_2)$ say. Equation of the line in two point form is

 $rac{y-y_1}{y_2-y_1} = rac{x-x_1}{x_2-x_1}$

∴ the equation of the required line is

$$\frac{y-0}{4-0} = \frac{x-2}{3-2}$$
$$\therefore \frac{y}{4} = \frac{x-2}{1}$$
$$\therefore y = 4(x-2)$$
$$\therefore y = 4x-8$$
$$\therefore 4x-y-8 = 0.$$

Exercise 5.3 | Q 5 | Page 73

Line y = mx + c passes through the points A(2, 1) and B(3, 2). Determine m and c.

SOLUTION

Given, A(2, 1) and B(3, 2).

Equation of a line in two point form is

$$rac{y-y_1}{y_2-y_1} = rac{x-x_1}{x_2-x_1}$$

 \therefore the equation of the passing through A and B line is

$$\frac{y-1}{2-1} = \frac{x-2}{3-2}$$

$$\therefore \frac{y-1}{1} = \frac{x-2}{1}$$

$$\therefore y-1 = x-2$$

$$\therefore y = x-1$$

Comparing this equation with y = mx + c, we get

$$m = 1 and c = -1$$

Alternative method:

Points A(2, 1) and B(3, 2) lie on the line y = mx + c.

 \therefore They must satisfy the equation.

 $\therefore 2m + c = 1 \qquad ...(i)$ and $3m + c = 2 \qquad ...(ii)$ equation (ii) equation (i) gives m = 1Substituting m = 1 in (i), we get 2(1) + c = 1 $\therefore c = 1 - 2 = -1.$

Exercise 5.3 | Q 6.1 | Page 73

The vertices of a triangle are A(3, 4), B(2, 0) and C(-1, 6). Find the equations of side BC

SOLUTION

Vertices of \triangle ABC are A(3, 4), B(2, 0) and C(-1, 6). Equation of a line in two point form is

$y - y_1$		x-1	
y_2 -	$-y_1$	$x_2 - x_1$	

: the equation of the side BC is

$$\frac{y-0}{6-0} = \frac{x-2}{-1-2} \quad \dots \begin{bmatrix} B = (x_1, y_1) = (2, 0) \\ C = (x_2, y_2) = (-1, 6) \end{bmatrix}$$

$$\therefore \frac{y}{6} = \frac{x-2}{-3}$$

$$y = -2 (x-2)$$

$$\therefore 2x + y - 4 = 0.$$

Exercise 5.3 | Q 6.2 | Page 73

The vertices of a triangle are A(3, 4), B(2, 0) and C(-1, 6). Find the equations of the median AD.

SOLUTION

Vertices of \triangle ABC are A(3, 4), B(2, 0) and C(-1, 6). Let D be the midpoint of side BC. Then, AD is the median through A.

$$\therefore \mathsf{D} = \left(\frac{2-1}{2}, \frac{0+6}{2}\right) = \left(\frac{1}{2}, 3\right)$$

The median AD passes through the points

... the equation of the median AD is

 $\frac{y-4}{3-4} = \frac{x-3}{\frac{1}{2}-3}$ $\therefore \frac{y-4}{-1} = \frac{x-3}{-\frac{5}{2}}$ $\therefore \frac{5}{2}(y-4) \times -3$ $\therefore 5y-20 = 2x-6$ $\therefore 2x-5y+14 = 0.$

Exercise 5.3 | Q 6.3 | Page 73

The vertices of a triangle are A(3, 4), B(2, 0) and C(-1, 6). Find the equations of the midpoints of sides AB and BC.

SOLUTION

Vertices of \triangle ABC are A(3, 4), B(2, 0) and C(-1, 6). Let D and E be the midpoints of side AB and side BC respectively.

$$\therefore \mathsf{D} = \left(\frac{3+2}{2}, \frac{4+0}{2}\right) = \left(\frac{5}{2}, 2\right) \text{ and }$$

$$\mathsf{E} = \left(\frac{2-1}{2}, \frac{0+6}{2}\right) = \left(\frac{1}{2}, 3\right)$$

 \therefore the equation of the line DE is A(3, 4)

Exercise 5.3 | Q 7.1 | Page 73

Find the x and y-intercepts of the following line: $\frac{x}{y} + \frac{y}{2} = 1$

SOLUTION

Given equation of the line is $\frac{x}{y} + \frac{y}{2} = 1$ This is of the form $\frac{x}{a} + \frac{y}{b} = 1$, where x-intercept = a, y-intercept = b \therefore x-intercept = 3, y-intercept = 2. Exercise 5.3 | Q7.2 | Page 73 Find the x and y-intercepts of the following line: $\frac{3x}{2} + \frac{2y}{3} = 1$

CLICK HERE

>>>

SOLUTION

Given equation of the line is $\frac{3x}{2} + \frac{2y}{3} = 1$

$$\therefore \frac{x}{\left(\frac{2}{3}\right)} + \frac{y}{\left(\frac{3}{2}\right)} = 1$$

This is of the form $\frac{x}{a} + \frac{y}{b} = 1$,

where x-intercept = a, y-intercept = b

$$\therefore$$
 x-intercept = $\frac{2}{3}$ and y-intercept = $\frac{3}{2}$.

Exercise 5.3 | Q 7.3 | Page 73

Find the x and y-intercepts of the following line: 2x - 3y + 12 = 0

SOLUTION

Given equation of the line is 2x - 3y + 12 = 0

$$\therefore 2x - 3y = -12$$

$$\therefore \frac{2x}{(-12)} - \frac{3y}{(-12)} = 1$$

$$\therefore \frac{x}{-6} + \frac{y}{4} = 1$$

This is of the form $\frac{x}{a} + \frac{y}{b} = 1$,

where x-intercept = a, y-intercept = b \therefore x-intercept = \square 6 and y-intercept = 4.

Exercise 5.3 | Q 8 | Page 73

Find the equations of a line containing the point A(3, 4) and making equal intercepts on the co-ordinate axes.

SOLUTION

Let the equation of the line be

 $\frac{x}{a} + \frac{y}{b} = 1$

Since, the required line make equal intercepts on the co-ordinate axes.

 $\therefore a = b$ $\therefore (i) reduces to x + y = a ...(ii)$ Since the line passes through A(3, 4). $\therefore 3 + 4 = a$ i.e. a = 7Substituting a = 7 in (ii) to get x + y = 7.

Exercise 5.3 | Q 9 | Page 73

Find the equations of the altitudes of the triangle whose vertices are A(2, 5), B(6, -1) and C(-4, -3).

SOLUTION

A(2, 5), B(6, -1), C(-4, -3) are the vertices of $\triangle ABC$.

Let AD, BE and CF be the altitudes through the vertices A, B and C respectively of ΔABC .

Slope of BC =
$$\frac{-3 - (-1)}{4 - 6} = \frac{-2}{-10} = \frac{1}{5}$$

 \therefore slope of AD = -5[\because AD \perp BC]

Since, altitude AD passes through (2, 5) and has slope - 5.

: the equation of the altitude AD is

$$y-5 = -5 (x-2)$$

$$\therefore y-5 = -5x + 10$$

$$\therefore 5x + y - 15 = 0$$

Now, slope of AC = $\frac{-3-5}{-4-2} = \frac{-8}{-6} = \frac{4}{3}$

$$\therefore$$
Slope of BE = $\frac{-3}{4} \quad \dots [\because BE \perp AC]$

Since, altitude BE passes through (6, – 1) and has slope $\frac{-3}{4}$.

 \therefore the equation of the altitude BE is

$$y - (-1) = \frac{-3}{4}(x - 6)$$

$$\therefore 4(y + 1) = -3 (x - 6)$$

$$\therefore 3x + 4y - 14 = 0$$

Also, slope of AB = $\frac{-1 - 5}{6 - 2} = \frac{-6}{4} = \frac{-3}{2}$

$$\therefore$$
Slope of BE = $\frac{2}{3}$ [:: CF \perp AB]
Since, altitude CF passes through (-4, -3) and has slope $\frac{2}{3}$.

 \therefore the equation of the altitude CF is

y - (-3) =
$$\frac{2}{3}[x - (-4)]$$

∴ 3 (y + 3) = 2 (x + 4)
∴ 2x - 3y - 1 = 0.

EXERCISE 5.4 [PAGE 78]

Exercise 5.4 | Q 1.1 | Page 78 Find the slope, x-intercept, y-intercept of the following line : 2x + 3y - 6 = 0

SOLUTION

Given equation of the line is 2x + 3y - 6 = 0Comparing this equation with ax + by + c = 0, we get a = 2, b = 3, c = -6

$$\therefore \text{ Slope of the line} = \frac{-a}{b} = \frac{-2}{3}$$

$$x \text{-intercept} = \frac{-c}{a} = \frac{-(-6)}{2} = 3$$

$$y \text{-intercept} = \frac{-c}{b} = \frac{-(-6)}{3} = 2$$

Exercise 5.4 | Q 1.2 | Page 78

Find the slope, x-intercept, y-intercept of the following line : x + 2y = 0

SOLUTION

Given equation of the line is x + 2y = 0

Comparing this equation with ax + by + c = 0,

we get

a = 1, b = 2, c = 0

$$\therefore$$
 Slope of the line = $\frac{-a}{b} = \frac{-3}{2}$

x-intercept =
$$\frac{-c}{a} = \frac{0}{1} = 0$$

y-intercept = $\frac{-c}{b} = \frac{0}{2} = 0$

Exercise 5.4 | Q 2.1 | Page 78

Write the following equation in ax + by + c = 0 form: y = 2x - 4

SOLUTION

y = 2x - 4 $\therefore 2x - y - 4 = 0$ is the equation in ax + by + c = 0 form.

Exercise 5.4 | Q 2.2 | Page 78

Write the following equation in ax + by + c = 0 form: y = 4

SOLUTION

y = 4 \therefore 0x +1y - 4 = 0 is the equation in ax + by + c = 0 form.

Exercise 5.4 | Q 2.3 | Page 78

Write the following equation in ax + by + c = 0 form: $\frac{x}{2} + \frac{y}{4} = 1$

SOLUTION

 $\frac{x}{2} + \frac{y}{4} = 1$ $\therefore \frac{2x + y}{4} = 1$

 $\therefore 2x + y = 4$

 \therefore 2x + y - 4 = 0 is the equation in ax + by + c = 0 form.

Exercise 5.4 | Q 2.4 | Page 78

Write the following equation in ax + by + c = 0 form: $\frac{x}{3} = \frac{y}{2}$

SOLUTION

 $\frac{x}{3} = \frac{y}{2}$

∴ 2x = 3y

 \therefore 2x - 3y + 0 = 0 is the equation in ax + by + c = 0 form.

Exercise 5.4 | Q 3 | Page 78

Show that the lines x - 2y - 7 = 0 and 2x - 4y + 5 = 0 are parallel to each other.

SOLUTION

Let m_1 be the slope of the line x - 2y - 7 = 0.

 $\therefore \mathsf{m}_1 = \frac{-2}{-2} = \frac{1}{2}$

Let m_2 be the slope of the line 2x - 4y + 5 = 0.

$$\therefore \mathsf{m}_2 = \frac{-2}{-4} = \frac{1}{2}$$

Since, $m_1 = m_2$

... The given lines are parallel to each other.

Exercise 5.4 | Q 4 | Page 78

If the line 3x + 4y = p makes a triangle of area 24 square units with the co-ordinate axes, then find the value of p.

Let the line 3x + 4y = p cuts the X and Y-axes at points A and B respectively. 3x + 4y = p

$$\therefore \frac{3x}{p} + \frac{4y}{p} = 1$$
$$\therefore \frac{x}{\frac{p}{3}} + \frac{y}{\frac{p}{4}} = 1$$

This equation is of the form

$$\frac{x}{a} + \frac{y}{b} = 1.$$

with a = $\frac{p}{3}$ and b = $\frac{p}{4}$

Given, A (Δ .OAB) = 24 sq. units

$$\therefore \frac{1}{2} \times OA \times OB = 24$$

$$\therefore \frac{1}{2} \times \frac{p}{3} \times \frac{p}{4} = 24$$

$$\therefore p^2 = 576$$

$$\therefore p = \pm 24.$$

Exercise 5.4 | Q 5 | Page 78

Find the co-ordinates of the circumcentre of the triangle whose vertices are A(-2, 3), B(6, -1), C(4, 3).

SOLUTION

Here, A(-2, 3), B(6, -1), C(4, 3) are the verticals of \triangle ABC. Let F be the circumcentre of \triangle ABC.

Let FD and FE be the perpendicular bisectors of the sides BC and AC respectively. \therefore D and E are the midpoints of side BC and AC respectively.

$$\therefore \mathsf{D} = \left(\frac{6+4}{2}, \frac{-1+3}{2}\right)$$
$$\therefore \mathsf{D} = (5, 1) \text{ and } \mathsf{E} = \left(\frac{-2+4}{2}, \frac{3+3}{2}\right)$$

 $\therefore E = (1, 3)$ Now, slope of BC = $\frac{-1-3}{6-4} = -2$ $\therefore \text{ slope of FD} = \frac{1}{2} \qquad ...[\because \text{ FD } \perp \text{ BC}]$ Since, FD passes through (5, 1) and has slope $\frac{1}{2}$ $\therefore \text{ Equation of FD is y - 1} = \frac{1}{2}(x-5)$ $\therefore 2(y-1) = x-5$ $\therefore x-2y-3 = 0 \qquad(i)$ Since, both the points A and C have same y co-ordinates i.e. 3 $\therefore \text{ the points A and C lie on the line y = 3.}$

Since, FE passes through E(1, 3).

 \therefore the equation of FE is x = 1. ...(ii)

To find co-ordinates of circumcentre, we have to solve equations (i) and (ii).

Substituting the value of x in (i), we get

$$1 - 2y - 3 = 0$$

: Co-ordinates of circumcentre F \equiv (1, -1).

Exercise 5.4 | Q 6 | Page 78

Find the equation of the line whose x-intercept is 3 and which is perpendicular to the line 3x - y + 23 = 0.

SOLUTION

Slope of the line 3x - y + 23 = 0 is 3. \therefore slope of the required line which is perpendicular to 3x - y + 23 = 0 is -1/3

Since, the x-intercept of the required line is 3.

 \therefore it passes through (3, 0).

∴ the equation of the required line is

$$y - 0 = \frac{-1}{3}(x - 3)$$

$$\therefore 3y = -x + 3$$

$$\therefore x + 3y = 3.$$

Exercise 5.4 | Q 7 | Page 78

Find the distance of the point A(-2, 3) from the line 12x - 5y - 13 = 0.

SOLUTION

Let p be the perpendicular distance of the point A(- 2, 3) from the line 12x - 5y - 13 = 0Here, a = 12, b = -5, c = -13, x₁ = -2, y₁ = 3

$$\therefore p = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$
$$= \left| \frac{12(-2) - 5(3) - 13}{\sqrt{12^2 + (-5)^2}} \right|$$
$$= \left| \frac{-24 - 15 - 13}{\sqrt{144 + 25}} \right|$$
$$= \left| \frac{-52}{13} \right|$$

= 4 units.

Exercise 5.4 | Q 8 | Page 78

Find the distance between parallel lines 9x + 6y - 7 = 0 and 9x + 6y - 32 = 0.

SOLUTION

Equations of the given parallel lines are 9x + 6y - 7 = 0 and 9x + 6y - 32 = 0.

Here, a = 9, b = 6, $C_1 = -7$ and $C_2 = -32$

: Distance between the parallel lines

$$= \left| \frac{C_1 - C_2}{\sqrt{a^2 + b^2}} \right|$$
$$= \left| \frac{-7 - (-32)}{\sqrt{9^2 + 6^2}} \right|$$
$$= \left| \frac{-7 + 32}{\sqrt{81 + 36}} \right|$$
$$= \left| \frac{25}{\sqrt{117}} \right|$$
$$= \frac{25}{\sqrt{117}} \text{ units.}$$

Exercise 5.4 | Q 9 | Page 78

Find the equation of the line passing through the point of intersection of lines x + y - 2 = 0 and 2x - 3y + 4 = 0 and making intercept 3 on the X-axis.

SOLUTION

Given equations of lines are

x + y - 2 = 0 ...(i) and 2x - 3y + 4 = 0 ...(ii)

Multiplying equation (i) by 3, we get 3x + 3y - 6 = 0 ...(iii)

Adding equation (ii) and (iii), we get 5x - 2 = 0

$$\therefore x = \frac{2}{5}$$

Substituting x = $\frac{2}{5}$ in equation (i), we get

$$\frac{2}{5} + y - 2 = 0$$

 $\therefore \mathsf{y} = 2 - \frac{2}{5} = \frac{8}{5}$

 \therefore The required line passes through point $\left(\frac{2}{5}, \frac{8}{5}\right)$.

Also, the line makes intercept of 3 on X-axis

 \therefore it also passes through point (3, 0).

 \therefore required equation of line passing through points $\left(\frac{2}{5}, \frac{8}{5}\right)$ and (3, 0) is

$$\frac{y - \frac{8}{5}}{0 - \frac{8}{5}} = \frac{x - \frac{2}{5}}{3 - \frac{2}{5}}$$
$$\therefore \frac{\frac{5y - 8}{5}}{-\frac{8}{5}} = \frac{\frac{5x - 2}{5}}{\frac{13}{5}}$$
$$\therefore \frac{5y - 8}{-8} = \frac{5x - 2}{13}$$

$$\therefore 65y - 104 = -40x + 16$$

 \therefore 8x + 13y - 24 = 0 which is the equation of the required line.

Exercise 5.4 | Q 10.1 | Page 78

D(- 1, 8), E(4, - 2), F(- 5, - 3) are midpoints of sides BC, CA and AB of \triangle ABC Find: equations of sides of \triangle ABC

SOLUTION

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of \triangle ABC.

Given, points D, E and F are midpoints of sides BC, CA and AB respectively of ΔABC.

A(x₁, y₁)
(-5, -|3)F
B(x₂, y₂)
D(-1, 8)
C(x₃, y₃)
D =
$$\left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right)$$

 \therefore (-1, 8) = $\left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right)$
 \therefore x₂ + x₃ = -2 ...(i)
and y₂ + y₃ = 16 ...(ii)
Also, E = $\left(\frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2}\right)$
 \therefore (4, -2) = $\left(\frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2}\right)$
 \therefore x1 + x3 = 8 ...(iii)
and y1 + y3 = -4 ...(iv)
Similarly, F = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
 \therefore (-5, -3) = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
 \therefore x₁ + x₂ = -10 ...(v)
and y₁ + y₂ = -6 ...(vi)

and $y_1 + y_2 = -6$...(vi) For x-coordinates: Adding (i), (iii) and (v), we get $2x_1 + 2x_2 + 2x_3 = -4$ $\therefore x_1 + x_2 + x_3 = -2$ Solving (i) and (vii), we get $x_1 = 0$

Solving (iii) and (vii), we get $x_2 = -10$ Solving (v) and (vii), we get $x_3 = 8$

For y-coordinates:

Adding (ii), (iv) and (vi), we get

 $2y_1 + 2y_2 + 2y_3 = 6$ ∴ $y_1 + y_2 + y_3 = 3$...(viii) Solving (ii) and (viii), we get $y_1 = -13$ Solving (iv) and (viii), we get $y_2 = 7$ Solving (vi) and (viii), we get $y_3 = 9$ ∴ Vertices of ΔABC are A.(0, -13), B(-10, 7), C(8, 9) **a.** Equation of side AB is

$$\frac{y+13}{7+13} = \frac{x-0}{-10-0}$$
$$\therefore \frac{y+13}{20} = \frac{x}{-10}$$
$$\therefore \frac{y+13}{2} = -x$$

b. Equation of side BC is

$$\frac{y-7}{9-7} = \frac{x+10}{8+10}$$
$$\therefore \frac{y-7}{2} = \frac{x+10}{9}$$
$$\therefore y-7 = \frac{x+10}{9}$$
$$\therefore x-9y+73 = 0$$
c. Equation of side AC is
$$\frac{y+13}{9+13} = \frac{x-0}{8-0}$$

 $\therefore \frac{y+13}{22} = \frac{x}{8}$ $\therefore 8(y+130 = 22x)$ $\therefore 4(y+13) = 11x$ $\therefore 11x - 4y - 52 = 0.$

Exercise 5.4 | Q 10.2 | Page 78

D(-1, 8), E(4, -2), F(-5, -3) are midpoints of sides BC, CA and AB of \triangle ABC Find: coordinates of the circumcentre of \triangle ABC.

SOLUTION

Here, A(0, -13) B(-10, 7), C(8, 9) are the vertices of \triangle ABC. Let F be the circumcentre of \triangle ABC.

Let FD and FE be perpendicular bisectors of the sides BC and AC respectively. \therefore D and E are the midpoints of side BC and AC.

$$\therefore D = \left(\frac{-10+8}{2}, \frac{7+9}{2}\right)$$

$$\therefore D = (-1, 8) \text{ and } E = \left(\frac{0+8}{2}, \frac{-13+9}{2}\right)$$

$$\therefore E = (4, -2)$$

Now, slope of BC = $\frac{7-9}{-10-8} = \frac{1}{9}$

$$\therefore \text{ slope of FD} = -9 \qquad ...[:: FD \perp BC]$$

Since, FD passes through (-1, 8) and has slope - 9

$$\therefore \text{ Equation of FD is}$$

$$y - 8 = -9 (x + 1)$$

∴ $y - 8 = -9 x - 9$
∴ $y = -9x - 1$...(i)
Also, slope of AC = $\frac{-13 - 9}{0 - 8} = \frac{11}{4}$
∴ Slope of FE = $\frac{-4}{11}$...[∵ FE ⊥ AC]

Since, FE passes through (4, – 2) and has slope $rac{-4}{11}$

∴ Equation of FE is

$$y + 2 = \frac{-4}{11}(x - 4)$$

$$\therefore 11(y + 2) = -4(x - 4)$$

$$\therefore 11y + 22 = -4x + 16$$

$$\therefore 4x + 11y = -6 \qquad ...(ii)$$

To find co-ordinates of circumcentre,
we have to solve equations (i) and (ii).
Substituting the value of y in (ii), we get

$$4x + 11(-9x - 1) = -6$$

$$\therefore 4x - 99x - 11 = -6$$

$$\therefore -95x = 5$$

$$\therefore x = \frac{-1}{19}$$

Substituting the value of x in (i), we get

vy,

y =
$$-9\left(-\frac{1}{19}\right) - 1 = \frac{-10}{19}$$

∴ Co-ordinates of circumcentre F = $\left(\frac{-1}{19}, \frac{-10}{19}\right)$.

MISCELLANEOUS EXERCISE 5 [PAGES 79 - 80]

Miscellaneous Exercise 5 | Q 1.1 | Page 79 Find the slope of the line passing through the following point: (1, 2), (3, -5)

SOLUTION

Let A = $(1, 2) = (x_1, y_1)$ and B = $(3, -5) = (x_2, y_2)$ say.

Slope of line AB = $\frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{-5 - 2}{3 - 1}$ $= \frac{-7}{2}.$

Miscellaneous Exercise 5 | Q 1.2 | Page 79 Find the slope of the line passing through the following point: (1, 3), (5, 2)

SOLUTION

Let C = $(1, 3) = (x_1, y_1)$ and D = $(5, 2) = (x_2, y_2)$ say.

Slope of line CD =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{2 - 3}{5 - 1}$$

CLICK HERE

>>>

SOLUTION

 $=\frac{-1}{4}$.

Let E =(-1, 3) = (x₁, y₁) and F = (3, -1) = (x₂, y₂) say. Slope of line EF = $\frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{-1 - 3}{3 - (-1)}$

$$=\frac{-4}{4}$$
$$=-1.$$

Miscellaneous Exercise 5 | Q 1.4 | Page 79

Find the slope of the line passing through the following point: (2, -5), (3, -1)

SOLUTION

Let $P = (2, -5) = (x_1, y_1)$ and $Q = (3, -1) = (x_2, y_2)$ say.

Slope of line PQ = $rac{y_2-y_1}{x_2-x_1}$

$$= \frac{-1 - (-5)}{3 - 2}$$
$$= \frac{-1 + 5}{1}$$

= 4.

Miscellaneous Exercise 5 | Q 2.1 | Page 79

Find the slope of the line which makes an angle of 120° with the positive X-axis.

SOLUTION

 $\theta = 120^{\circ}$ Slope of the line = tan 120° = tan (180 - 60°) = - tan 60° ...[tan(180° - θ) = - tan θ] = - $\sqrt{3}$.

Miscellaneous Exercise 5 | Q 2.2 | Page 79

Find the slope of the line which makes intercepts 3 and - 4 on the axes.

SOLUTION

Given, x-intercept of line is 3 and y-intercept of line is -4 \therefore The line intersects X-axis at (3, 0) and Y-axis at (0, -4).

: The line passes through $(3, 0) = (x_1, y_1)$ and $(0, -4) = (x_2, y_2)$ say.

$$\therefore \text{ Slope of line} = \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{-4 - 0}{0 - 3}$$
$$= \frac{-4}{-3}$$
$$= \frac{4}{3}.$$

Miscellaneous Exercise 5 | Q 2.3 | Page 79

Find the slope of the line which passes through the points A(-2, 1) and the origin.

SOLUTION

Required line passes through $O(0, 0) = (x_1, y_1)$ and $A(-2, 1) = (x_2, y_1)$ say.

Slope of line OA = $\frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{1 - 0}{-2 - 0}$ $= \frac{1}{-2}$ $= \frac{-1}{2}.$

Miscellaneous Exercise 5 | Q 3.1 | Page 79

Find the value of k: if the slope of the line passing through the points (3, 4), (5, k) is 9.

SOLUTION

Let P(3, 4), Q(5, k). Slope of PQ = 9 ...[Given] $\therefore \frac{k-4}{5-3} = 9$ $\therefore \frac{k-4}{2} = 9$ $\therefore k-4 = 18$ $\therefore k = 22.$

Miscellaneous Exercise 5 | Q 3.2 | Page 79

Find the value of k: the points (1, 3), (4, 1), (3, k) are collinear.

SOLUTION

The points A(1, 3), B(4, 1) and C(3, k) are collinear. \therefore Slope of AB = Slope of BC

$$\therefore \frac{1-3}{4-1} = \frac{k-1}{3-4}$$
$$\therefore \frac{-2}{3} = \frac{k-1}{-1}$$
$$\therefore 2 = 3k-3$$
$$\therefore k = \frac{5}{3}.$$

Miscellaneous Exercise 5 | Q 3.3 | Page 79

Find the value of k: the point P(1, k) lies on the line passing through the points A(2, 2) and B(3, 3).

SOLUTION

Given, point P(1, k) lies on the line joining A(2, 2) and B(3, 3).

 \therefore Slope of AB = Slope of BP

$$\therefore \frac{3-2}{3-2} = \frac{3-k}{3-1}$$
$$\therefore 1 = \frac{3-k}{2}$$
$$\therefore 2 = 3-k$$
$$\therefore k = 1.$$

Miscellaneous Exercise 5 | Q 4 | Page 79

Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence, find its slope.

SOLUTION

Given equation is 6x + 3y + 8 = 0, which can be written as 3y = -6x - 8

$$\therefore y = \frac{-6x}{3} - \frac{8}{3}$$
$$\therefore y = -2x - \frac{8}{3}$$

This is of the form y = mx + c with m = -2

$$\therefore$$
 y = $-2x - \frac{8}{3}$ is in slope-intercept form with slope = -2.

Miscellaneous Exercise 5 | Q 5 | Page 79

Verify that A(2, 7) is not a point on the line x + 2y + 2 = 0.

SOLUTION

Given equation is x + 2y + 2 = 0. Substituting x = 2 and y = 7 in L.H.S. of given equation, we get L.H.S. = x + 2y + 2= 2 + 2(7) + 2= 2 + 14 + 2= 18 \neq R.H.S. \therefore Point A does not lie on the given line.

Miscellaneous Exercise 5 | Q 6 | Page 79

Find the X-intercept of the line x + 2y - 1 = 0

SOLUTION

Given equation of the line is x + 2y - 1 = 0To find the x-intercept, put y = 0 in given equation of the line $\therefore x + 2(0) - 1 = 0$ $\therefore x + 0 - 1 = 0$ $\therefore x = 1$ \therefore X-intercept of the given line is 1. Alternative method: Given equation of the line is x + 2y - 1 = 0i.e. x + 2y = 1 $\therefore \frac{x}{1} + \frac{y}{\frac{1}{2}} = 1$ Comparing with $\frac{x}{a} + \frac{y}{b} = 1$, we get a = 1 \therefore X-intercept of the line is 1.

Miscellaneous Exercise 5 | Q 7 | Page 79

Find the slope of the line y - x + 3 = 0.

SOLUTION

Equation of given line is y - x + 3 = 0i.e. y = x - 3Comparing with y = mx + c, we get m = Slope = 1.

Miscellaneous Exercise 5 | Q 8 | Page 79

Does point A(2, 3) lie on the line 3x + 2y - 6 = 0? Give reason.

SOLUTION

Given equation is 3x + 2y - 6 = 0. Substituting x = 2 and y = 3 in L.H.S. of given equation, we get L.H.S. = 3x + 2y - 6 = 3(2) + 2(3) - 6 = 6 \neq R.H.S. \therefore Point A does not lie on the given line.

Miscellaneous Exercise 5 | Q 9 | Page 79

Which of the following lines passes through the origin?

- 1. x = 2
- 2. y = 3
- 3. y = x + 2
- 4. 2x y = 0

SOLUTION

Any line passing through origin is of the form y = mx or ax + by = 0. Here in the given option, 2x - y = 0 is in the form ax + by = 0.

Miscellaneous Exercise 5 | Q 10.1 | Page 79

Obtain the equation of the line which is: parallel to the X-axis and 3 units below it.

SOLUTION

Equation of a line parallel to X-axis is y = k. Since, the line is at a distance of 3 units below X-axis. $\therefore k = -3$ \therefore the equation of the required line is y = -3 i.e., y + 3 = 0.

Miscellaneous Exercise 5 | Q 10.2 | Page 79

Obtain the equation of the line which is: Obtain the equation of the line which is:

SOLUTION

Equation of a line parallel to Y-axis is x = h. Since, the line is at a distance of 2 units to the left of Y-axis. $\therefore h = -2$ \therefore the equation of the required line is x = -2 i.e., x + 2 = 0.

Miscellaneous Exercise 5 | Q 10.3 | Page 79

Obtain the equation of the line which is: parallel to the X-axis and making an intercept of 5 on the Y-axis.

SOLUTION

Equation of a line parallel to X-axis with y-intercept 'k' is y = k. Here, y-intercept = 5 \therefore the equation of the required line is y = 5.

Miscellaneous Exercise 5 | Q 10.4 | Page 79

Obtain the equation of the line which is: parallel to the Y-axis and making an intercept of 3 on the X-axis.

SOLUTION

Equation of a line parallel to Y-axis with x-intercept 'h' is x = h. Here, x-intercept = 3 \therefore the equation of the required line is x = 3.

Miscellaneous Exercise 5 | Q 11.1 | Page 79

Obtain the equation of the line containing the point: (2, 3) and parallel to the X-axis.

SOLUTION

Equation of a line parallel to X-axis is of the form y = k. Since, the line passes through (2, 3).

 $\therefore \mathbf{k} = 3$

 \therefore the equation of the required line is y = 3.

Miscellaneous Exercise 5 | Q 11.2 | Page 79

Obtain the equation of the line containing the point: (2, 4) and perpendicular to the Y-axis.

SOLUTION

Equation of a line perpendicular to Y-axis i.e., parallel to X-axis, is of the form y = k. Since, the line passes through (2, 4).

∴ k = 4

 \therefore the equation of the required line is y = 4.

Miscellaneous Exercise 5 | Q 11.3 | Page 79

Obtain the equation of the line containing the point: (2, 5) and perpendicular to the X-axis.

SOLUTION

Equation of a line perpendicular to X-axis i.e., parallel to Y-axis, is of the form x = h. $\therefore h = 2$ \therefore the equation of the required line is x = 2.

Miscellaneous Exercise 5 | Q 12.1 | Page 79 Find the equation of the line: having slope 5 and containing point A(-1, 2).

SOLUTION

Given, slope(m) = 5 and the line passes through A(-1, 2). Equation of the line in slope point form is $y - y_1 = m(x - x_1)$ \therefore the equation of the required line is y - 2 = 5(x + 1) $\therefore y - 2 = 5x + 5$ $\therefore 5x - y + 7 = 0$.

Miscellaneous Exercise 5 | Q 12.2 | Page 79

Find the equation of the line: containing the point (2, 1) and having slope 13.

SOLUTION

Given, slope(m) = 13 and the line passes through (2, 1). Equation of the line in slope point form is $y - y_1 = m(x - x_1)$ \therefore the equation of the required line is y - 1 = 13(x - 2) $\therefore y - 1 = 13x - 26$ $\therefore 13x - y = 25$.

Miscellaneous Exercise 5 | Q 12.3 | Page 79

Find the equation of the line: containing the point T(7, 3) and having inclination 90°.

CLICK HERE

🕀 www.studentbro.in

SOLUTION

Given, Inclination of line = θ = 90° \therefore the required line is parallel to Y-axis (or lies on the Y-axis.)

Equation of a line parallel to Y-axis is of the form x = h. Since, the line passes through (7, 3).

- ∴ h = 7
- \therefore the equation of the required line is x = 7.

Miscellaneous Exercise 5 | Q 12.4 | Page 79

Find the equation of the line: containing the origin and having inclination 90°.

SOLUTION

Given, Inclination of line = θ = 90° \therefore the required line is parallel to Y-axis (or lies on the Y-axis.)

Equation of a line parallel to Y-axis is of the form x = h. Since, the line passes through origin (0, 0).

 \therefore h = 0

 \therefore the equation of the required line is x = 0.

Miscellaneous Exercise 5 | Q 12.5 | Page 79

Find the equation of the line: through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co-ordinate axes.

Given equation of the line is 3x + 2y = 2.

$$\therefore \frac{3x}{2} + \frac{2y}{2} = 1$$
$$\therefore \frac{x}{\frac{2}{3}} + \frac{y}{1} = 1$$

This equation is of the form $\frac{x}{a} + \frac{y}{b} = 1$, with $a = \frac{2}{3}$, b = 1.

Get More Learning Materials Here : 🗾

Regional www.studentbro.in

: the line 3x + 2y = 2 intersects the X-axis at $A\left(\frac{2}{3}, 0\right)$ and Y-axis at B(0, 1).

Required line is passing through the midpoint of AB.

$$\therefore \text{ Midpoint of AB} = \left(\frac{\frac{2}{3}+0}{2}, \frac{0+1}{2}\right) = \left(\frac{1}{3}, \frac{1}{2}\right)$$

 \therefore Required line passes through (0, 0) and $\left(\frac{1}{3}, \frac{1}{2}\right)$.

Equation of the line in two point form is

$$rac{y-y_1}{y_2-y_1} = rac{x-x_1}{x2-x_1}$$

: the equation of the required line is

$$\frac{y-0}{\frac{1}{2}-0} = \frac{x-0}{\frac{1}{3}-0}$$

$$\therefore 2y = 3x$$

$$\therefore 3x - 2y = 0.$$

Miscellaneous Exercise 5 | Q 13 | Page 80

Find the equation of the line passing through the points A(-3, 0) and B(0, 4).

SOLUTION

Since, the required line passes through the points A(-3, 0) and B(0, 4). Equation of the line in two point form is

$$rac{y-y_1}{y_2-y_1} = rac{x-x_1}{x_2-x_1}$$

Here, $(x_1, y_1) = (-3, 0)$ and $(x_2, y_2) = (0, 4)$

.: the equation of the required line is

$$rac{y-0}{4-0} = rac{x-(-3)}{0-(-3)}$$

 $\therefore \frac{y}{4} = \frac{x+3}{3}$ $\therefore 4x + 12 = 3y$ $\therefore 4x - 3y + 12 = 0.$

Miscellaneous Exercise 5 | Q 14.1 | Page 80

Find the equation of the line: having slope 5 and making intercept 5 on the X-axis.

SOLUTION

Since, the x-intercept of the required line is 5. \therefore it passes through (5, 0).

Also, slope(m) of the line is 5 Equation of the line in slope point form is $y - y_1 = m(x - x_1)$

∴ the equation of the required line is y - 0 = 5(x - 5)∴ y = 5x - 25∴ 5x - y - 25 = 0.

Miscellaneous Exercise 5 | Q 14.2 | Page 80

Find the equation of the line: having an inclination 60° and making intercept 4 on the Y-axis.

SOLUTION

Given, Inclination of line = θ = 60°

: slope of the line (m) = tan θ = tan 60° = $\sqrt{3}$ and the y-intercept of the required line is 4.

 \therefore it passes through (0, 4).

Equation of the line in slope point form is $y - y_1 = m(x - x_1)$

 \therefore the equation of the required line is

$$y - 4 = \sqrt{3}(x - 0)$$

$$\therefore y - 4 = \sqrt{3}x$$

$$\therefore \sqrt{3}x - y + 4 = 0.$$

Miscellaneous Exercise 5 | Q 15.1 | Page 80

The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the sides

SOLUTION

Vertices of ∆ABC are A(1, 4), B(2, 3) and C(1, 6)

Equation of the line in two point form is

$y-y_1$	_	$x - x_1$
$y_2 - y_1$	_	$x_2 - x_1$

Equation of side AB is

 $\frac{y-4}{3-4} = \frac{x-1}{2-1}$ $\therefore \frac{y-4}{-1} = \frac{x-1}{1}$ $\therefore y-4 = -1(x-1)$ $\therefore x+y = 5$ Equation of side BC is

$$\frac{y-3}{6-3} = \frac{x-2}{1-2}$$
$$\therefore \frac{y-3}{3} = \frac{x-2}{-1}$$

$$\therefore -1(y-3) = 3(x-2)$$

$$\therefore 3x + y = 9$$

Since, both the points A and C have same x co-ordinates i.e. 1

: the points A and C lie on a line parallel to Y-axis.

 \therefore the equation of side AC is x = 1.

Miscellaneous Exercise 5 | Q 15.2 | Page 80

The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the medians

SOLUTION

Vertices of $\triangle ABC$ are A(1, 4), B(2, 3) and C(1, 6) Let D, E and F be the midpoints of sides BC, AC and AB respectively of $\triangle ABC$.

Then D =
$$\left(\frac{2+1}{2}, \frac{3+6}{2}\right) = \left(\frac{3}{2}, \frac{9}{2}\right)$$

E = $\left(\frac{1+1}{2}, \frac{6+4}{2}\right) = (1, 5)$
F = $\left(\frac{1+2}{2}, \frac{4+3}{2}\right) = \left(\frac{3}{2}, \frac{7}{2}\right)$

Equation of median AD is

$$\frac{y-4}{\frac{9}{2}-4} = \frac{x-1}{\frac{3}{2}-1}$$

$$\therefore \frac{y-4}{\frac{1}{2}} = \frac{x-1}{\frac{1}{2}}$$

$$\therefore y-4 = x-1$$

$$\therefore x-y+3 = 0$$

Equation of median BE is
$$\frac{y-3}{5-3} = \frac{x-2}{1-2}$$

$$\therefore \frac{y-3}{2} = \frac{x-2}{-1}$$

$$\therefore -1(y + 3) = 2(x - 2)$$

$$\therefore -y + 3 = 2x - 4$$

$$\therefore 2x + y = 7$$

Equation of median CF is

$$\frac{y-6}{\frac{7}{2}-6} = \frac{x-1}{\frac{3}{2}-1}$$

$$\therefore \frac{y-6}{-\frac{5}{2}} = \frac{x-1}{\frac{1}{2}}$$

$$\therefore \frac{y-6}{-5} = \frac{x-1}{1}$$

$$\therefore y-6 = -5(x-1)$$

$$\therefore y-6 = -5+5$$

$$\therefore 5x + y - 11 = 0.$$

Miscellaneous Exercise 5 | Q 15.3 | Page 80

The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of Perpendicular bisectors of sides

SOLUTION

Vertices of $\triangle ABC$ are A(1, 4), B(2, 3) and C(1, 6)

 \therefore Slope of perpendicular bisector of BC is $\frac{1}{3}$ and the lines passes through $\left(\frac{3}{2}, \frac{9}{2}\right)$.

CLICK HERE

 \gg

🕀 www.studentbro.in

: Equation of the perpendicular bisector of side BC is

$$\left(y - \frac{9}{2}\right) = \frac{1}{3}\left(x - \frac{3}{2}\right)$$
$$\therefore \frac{2y - 9}{2} = \frac{1}{3}\left(\frac{2x - 3}{2}\right)$$
$$\therefore 3(2y - 9) = (2x - 3)$$
$$\therefore 2x - 6y + 24 = 0$$
$$\therefore x - 3y + 12 = 0$$

Since, both the points A and C have same x co-ordinates i.e. 1

 \therefore the points A and C lie on the line x = 1.

AC is parallel to Y-axis and therefore, perpendicular bisector of side AC is parallel to X-axis. Since, the perpendicular bisector of side AC passes through E(1, 5).

 \therefore the equation of perpendicular bisector of side AC is y = 5.

Slope of side AB =
$$\left(\frac{3-4}{2-1} = -1\right)$$

 \therefore Slope of perpendicular bisector of AB is 1 and the line passes through $\left(\frac{3}{2}, \frac{7}{2}\right)$.

: Equation of the perpendicular bisector of side AB is

$$\left(y - \frac{7}{2}\right) = 1\left(x - \frac{3}{2}\right)$$
$$\therefore \frac{2y - 7}{2} = \frac{2x - 3}{2}$$
$$\therefore 2y - 7 = 2x - 3$$
$$\therefore 2x - 2y + 4 = 0$$
$$\therefore x - y + 2 = 0$$

Miscellaneous Exercise 5 | Q 15.4 | Page 80

The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of altitudes of $\triangle ABC$

SOLUTION

Vertices of $\triangle ABC$ are A(1, 4), B(2, 3) and C(1, 6)

Let AX, BY and CZ be the altitudes through the vertices A, B and C respectively of \triangle ABC. Slope of BC = -3

 $\therefore \text{ slope of AX} = \frac{1}{3} \qquad ...[\because \text{AX} \perp \text{BC}]$

Since, altitude AX passes through (1, 4) and has slope $\frac{1}{3}$

 \therefore equation of altitude AX is

$$y-4 = \frac{1}{3}(x-1)$$

∴ $3y-12 = x-1$
∴ $x-3y+11 = 0$

Since, both the points A and C have same x co-ordinates i.e. 1 \therefore the points A and C lie on the line x = 1.

AC is parallel to Y-axis and therefore, altitude BY is parallel to X-axis. Since, the altitude BY passes through B(2, 3).

∴ the equation of altitude BY is y = 3. Also, slope of AB = -1∴ slope of CZ = 1 ...[∵ CZ ⊥ AB]

Since, altitude CZ passes through (1, 6) and has slope 1 \therefore equation of altitude CZ is \therefore y - 6 = 1(x - 1) \therefore x - y + 5 = 0.

